Monitoring Carbon Dioxide Trends from Spectral Radiance Measurements

Eui-Seok Chung and Brian Soden

Rosenstiel School for Marine and Atmospheric Science University of Miami

IASI Spectral Coverage

©EUMETSAT, 2006

Earth-System Models are now predicting CO2!

Mean Seasonal Cycle: Global (60N-60S) Ocean-only

Seasonal Variation of HIRS Channel 5 Brightness Temperature (2000~2004; 60N-60S, Ocean)

Simulation

- 1) Globally average marine surface CO₂: f(t)
- 2) CarbonTracker CO₂ profile: f(x,y,z,t)

HIRS Channel 5: JJA - DJF

Interannual Anomalies: 1980-2005

AIRS Mid-Tropospheric CO2

Carbon Tracker CO2 (500 mb)

AIRS exhibits much larger spatial and temporal variations in CO2

Surface Measurements vs. AIRS Mid-Trop Retrievals

Surface flask and AIRS mid-tropospheric climatologies differ significantly

Surface Measurements vs. AIRS Mid-Trop Retrievals

Trends have a similar range, but no correlation between surface and AIRS

Interannual Anomalies: 1980-2005

Linear Trends: 1980-2005

Conclusions

- Satellite IR measurements suggest larger spatial and temporal variability in CO2 than produced in data assimilation products (Carbon Tracker).
- Trends in HIRS and AIRS suggest increases in CO2 over southern oceans which are comparable to that observed in northern hemisphere.
- Interested in comparing with other available CO2 retrievals/radiances.